
J .  Pluid Mech. (1966), wol. 24, part 4, pp. 823-843 

Printed in. Great Britain 

823 

Numerical experiments with free convection in a 
vertical slot 
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San Diego 

(Received 30 July 1965) 

Numerical solutions of the equations of steady free convection in a vertical 
slot have been obtained by a procedure which relies solely on an iterative solution 
of Poisson’s equation. With a mesh spacing of &, the solutions are stable up to a 
Rayleigh number of order lo5. The numerical experiments are comparable to 
the author’s laboratory experiments (Elder 1965) and to the experiments of 
Eckert & Carlson (1961). The growth of the boundary layers and the uniform 
vertical temperature gradient are well described. It is tentatively suggested 
that certain unstable motions found prior to the divergence of the numerica,l 
solution are comparable to the secondary flows found by the author. 

1. Introduction 
One of the more recent advances in theoretical fluid mechanics has been in 

the study of non-linear systems. Nevertheless, the analysis of many problems 
is in such a primitive state that our knowledge is largely restricted to that found 
in the laboratory. However, with present-day computing machines some of these 
problems can be studied with benefit both to the experimenter and theoretician. 
Alreadysomefascinatingstudieshavebeen reported (e.g. Fromm &Harlow 1963). 

The aim of the present investigation is twofold. The immediate objective 
is an enquiry into the validity of the ideas about free convection in a vertical 
slot arising from some of the authors recent laboratory experiments (Elder 
1965). The second and more long-term objective is the desire to construct a versa- 
tile computer programme to solve sets of simultaneous elliptic non-linear partial 
differential equations. The principal difficulty with such a task is that while 
numerical solutions can be readily generated their validity is generally not 
obvious. However, one can proceed by first solving problems that are well 
understood, adding additional features one at a time so that at each stage one 
has confidence in the solutions. Free convection in a porous medium is a particu- 
larly convenient starting point since the boundary conditions are the simplest 
ones possible, there is no diffusion of vorticity and the flow field is non-linear 
solely through the advection of heat. For a porous medium, the equations 
are (3c, d,  e )  below, together with the equation w = AB,. The work with a 
porous medium will be reported in another paper. Given the porous medium 
programme we incorporate the additional parts (3a, b) which allow diffusion 

t Now at Department of Applied Mathematics & Theoretical Physics, Cambridge. 
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and advection of vorticity appropriate to the flow of a viscous fluid. The evalu- 
ation of this problem and a comparison with laboratory experiment is the task 
of this paper. 

Two things have principally contributed to this task. The first and most im- 
portant has been laboratory experience with the system itself. The experimenter 
inevitably spends considerable time close to the experiment and even though 
many of his observations may not be immediately amenable to analytical dis- 
cussion, he acquires a considerable familiarity with the behaviour of the system. 
The second matter has been some recent experience of the author with electronic 
analogue computers. These machines, designed to solve simultaneous non- 
linear ordinary differential equations give the user considerable insight into the 
behaviour of complicated non-linear servo-mechanisms. We find that the organiz- 
ation of a calculation such as that described here is closely analogous to the 
design of such servo-mechanisms. 

In  392 and 3 the numerical problem is formulated and the numerical pro- 
cedure evaluated. The results are given in $ 4  followed by a discussion in $ 5 .  
The calculations were performed on the CDC 3600 computer at  the University of 
California, San Diego. 

2. Formulation of the problem 
2.1. The systems of equafions 

Consider the steady motion of a viscous fluid in a hollow rectangular prism of 
width L, height H ,  and breadth B, the vertical walls of which can be heated or 
cooled, while the top and bottom walls are insulators. Erect a co-ordinate frame 
0 - X Y Z  with its origin in one corner of the prism. Let the vertical wall x = L 
be maintained a t  temperature To, the wall x = 0 a t  temperature (To+ AT).  
If B 9 L and H ,  the motion will be nearly everywhere two-dimensional, being 
confined to planes y = const. This problem has been studied theoretically by 
Batchelor (1954) and experimentally by Eckert & Carlson (1961) and Elder 
(1965). 

For the purpose of the numerical calculations, replace the flow space by a 
finite number of points regularly spaced a distance D apart. Making the Rous- 
sinesq approximation, that density variations are significant only in their 
generation of buoyancy forces, and that other fluid parameters are independent 
of temperature, the problem is defined by: the kinematic viscosity, v ;  the thermal 
diffusivity, K ;  the acceleration due t o  buoyancy, ygAT where y is the coefficient 
of cubical expansion; the width L; the height H ;  and the mesh spacing D. Hence 
since these involve only the dimensions of length and time, four dimensionless 
parameters are needed to specify the system. A convenient set is: 

I CT = V / K  Prandtl number; 

A = ygATL3/~v Rayleigh number; 

h = H / L  Aspect ratio; 

d = D / L  Mesh spacing. 
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The field variables can be conveniently made dimensionless by choosing units 
of length, temperature, pressure, velocity: 

L, AT, p&g, 4. ( 2 )  

The dimensionless temperature will be written as 8. We shall write 5 = 1 - x. 
Note that the choice of velocity unit follows Batchelor (1954) rather than 
Elder (1965). 

For steady, two-dimensional flow the field equations, simplified by the 
Boussinesq approximation, can be written with the units ( 2 )  in the dimensionless 
form (Batchelor 1954) 

(3a )  

V2w = u, (36) 

V2$ = w ,  (3c) 

(3 4 
'020 = V ,  ( 3 c )  

u = -A0,+(l/c)a(@,w>, 

V = a($, O), 

where a is the Jacobian operator and x is the horizontal co-ordinate. Note that 
the velocity q = ( -  $z, $J and the vorticity w = V x q = - j w ,  where 3 is a 
unit vector parallel to the y-axis (into the paper in the diagrams shown here). 
The source terms U ,  V are the rate of generation of vorticity and temperature. 
Vorticity is generated by the torque arising from the horizontal gradient of the 
buoyancy forces. Otherwise U ,  V are produced by advection. I n  the discussion 
a($, w )  will be called the inertia and a($, 0) the advection. 

Equations (3) are to be represented by finite differences a t  the mesh points. 
The methods of obtaining this representation can be found in the standard texts 
(e.g. Fox 1962). Henceforth we regard (3) merely as a convenient shorthand for 
this finite-difference representation. 

2.2. Numerical method 

Numerous schemes have been proposed and used for the numerical solution of 
systems of equations such as the above. All of these schemes are equivalent to the 
inversion of a large sparse matrix by an iterative procedure. The method used here 
uses the equations as written in (3). Test functions U(O), w(O),  $ ( O ) ,  V(O), O(0) are 
first chosen and then each equation is solved in turn in the cycle (a,  b, c, d ,  e ,  a, . . . ) 
until the solution has converged or the process is terminated when the solution 
begins to diverge. Such a sequential scheme has the merit that the solution 
develops in a similar manner to that of the time-dependent problem a t  large 
times (cf. Garabedian 1956). The initial, high wave-number transients of the 
time-dependent problem do not appear. The method is very straightforward, 
the only point of departure from other authors is the treatment of the vorticity 
equation and the isolation of the non-linear terms. 

With respect to the vorticity equation one has the choice of solving the 
biharmonic equation, V4$ = U or, as here, solving Poisson's equation twice. 
Without an elaborate investigation, there is no clear choice. However, numerical 
schemes for solving the biharmonic equation are notoriously slowly conver- 
gent. For meshes of size 10 x 10 to 40 x 40 the double Poisson method has been 
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found to be much more rapid than the direct solution of the biharmonic equa- 
tion. (A single application of the biharmonic ‘molecule’ takes more than twice 
the time of that for the Poisson ‘molecule’.) The outstanding advantage of 
the double Poisson method is that the optimization of the iteration of Poisson’s 
equation is well understood. The only disadvantage is the loss of computer 
memory to store w .  

The isolation of the non-linear terms is very convenient and has produced no 
obvious difficulties. The bulk of the calculation is thereby spent solving Poisson’s 
equation, a process which can be made very rapid. In  schemes which incorporate 
the non-linear terms into the relaxation molecule it is difficult to choose an 
optimum relaxation scheme and the origin and development of numerical 
instabilities is obscured. The essential interest in such calculations is the role of 
the non-linear terms, here made as explicit as possible. 

3. Evaluation of the numerical scheme 
The basic assumption of $ 2  is that the solutions of the finite-difference scheme 

tend to the ‘ analytic ’ solution as d -+ 0. However, in practice only a small number 
of mesh points can be used (the smallest value of d used here was gk), so that it 
is necessary to determine by experiment whether or not the numerical solution 
corresponds to the analytic solution. This is especially difficult when no suitable 
analytic solutions are known. One must, therefore, check each operation of the 
numerical procedure and where possible compare the results with suitable 
laboratory experiments. The former task will be discussed here, the latter in 
subsequent sections. 

Four major matters are strongly controlled by d :  (i) stability; (ii) speed of 
convergence; (iii) precision, viz. number of significant figures of converged 
solution; (iv) accuracy, viz. departure of the numerical from the analytic solution. 
To summarize the results for the above scheme: 

(i) For example, given (T and h the solution will rapidly diverge for values of 

(ii) The speed of convergence cc d2. 
(iii), (iv) Precision and accuracy are of order d2. These are the predictions of 

A cc 1 p .  

numerical analysis (Pox 1962). 

3.1. On the solution of Poisson’s equation 

There is a vast literature on the problem of finite-difference methods of solving 
Poisson’s equation. Fortunately the problem is sufficiently well understood for 
one to proceed in a simple-minded way. The superiority of Liebmann’s extra- 
polated method is well known (Fox 1962). For example, if 

V2@ = w ,  (4) 

where w is given and there are suitable boundary conditions on @, we have the 
finite-difference scheme 

$(4j) = G@(i,j> - C ~ ( i , j )  
+B[$(i+ Lj)+@(i- l , ~ ) + ~ ( ~ , ~ + l ) + $ ( i , ~ - l ) ] .  (5) 
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The system of equations is scanned row by row or column by column using 
‘new’ values where present. I n  the ‘ordinary’ method G = 0 ,  B = a, C = i d 2 .  
The values used in the ‘extrapolated’ method are for a high degree of over- 
relaxation. They are 

( 6 4  

where E = 2{1- (1 - T)t}/T,  (6b) 

and T = 0.5[c08 (i./m) + cos (i./n)], ( 6 4  

G = 1-E, B = aE, C = $Ed’, 

for a mesh (m + 1) x (n+ 1). 
If one is merely interested in the solution of Poisson’s equation alone, there is 

at first sight little to choose between various ways of scanning the equations. 
However, it is soon apparent in a system of equations involving non-linearities 
that numerical instabilities readily arise and that the onset of these is very 
dependent on the scanning method. There are, of course, eight possible ways 
of combining row, column, and direction of scan. Liebmann’s method uses only 
one of these and thereby accumulates the errors in one corner. It is much better 
to alternate row, column and direction of scan. The error is then more evenly 
distributed and most important the form of the solution emerges much more 
rapidly. For a mesh much longer in one dimension than the other it is found 
best to scan only across the smaller dimension; there are then only four possible 
ways of scanning. Such a sequence of four iterations will be called a 4-scan. This 
method is rather similar to a method of Peaceman & Rachford (1955). 

As an example, consider the rectangle 

x = 0-2,  z = 0-1 with w = sin2~xsini.z 

and $ = 0 on the boundary. The ordinary method is very slow, requiring more 
than 50 iterations. Liebmann’s extrapolated method has a very rapid initial 
approach to the final solution. We notice that there is a slight overshoot and a 
subsequent damped oscillation about the final solution. The alternating row, 
column, direction method is a little slower, but has no perceptible overshoot. 
In  the language of servo-mechanisms the system is nearly critically damped. 
Both the Liebmann methods have converged to within 0.1 yo in a 41 x 21 mesh 
after 40 steps, to the centre value of 0.02042. The analytic value is +v2 = 0-02026. 
The numerical values are therefore 0.8 yo high. The form of the solution with the 
alternating system is very much the best; the form after only one 4-scan is 
superior to that of the Liebmann extrapolated method after 20 iterations. 

It is seen that the rate of convergence rapidly falls as the final solution is 
approached. This may appear to be an unfortunate (and expensive) situation. 
Actually this proves to be a great advantage since, as shown in figure 1, if 
is the final solution, approximately, 

$, - $ cc e--hs, (7) 

where s is the number of iterations and h is a constant. Hence given 3 successive 
values of $ we can estimate from 
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This method is similar to one used in some relaxation calculations (Aitken’s 
method). It is here that the method of alternating row, column, direction has its 
advantage. Since the form of the solution emerges rapidly, it  is only necessary 
to use the maximum absolute value of @ at 3 successive stages to calculate the 
extrapolation factor. A near optimum method is to choose these three values 
to be the starting value and the two values after two 4-scans. Thus a single 

10-3. 

10-4 

@ 3  

I I I 

extrapolation involves 8 iterations. Included in figure 1 are the values obtained 
after 3 successive extrapolations. The improvement after the first extrapolation 
is particularly marked: the error is 30 times smaller than for the non-extrapolated 
value, alternatively the time to reach about 1 yo accuracy has been reduced by 
a factor of 5. (Incidentally, an error of 1 yo requires 10 times as many iterations 
with Liebmann’s ordinary method.) It should be noted that the extrapolation 
method is stable, repeated extrapolations do not produce any difficulty (10 
successive extrapolations was the largest number tested). Table 1 is a summary 
of the solutions of (4) with w = sin nx sin m and 21. = 0 on the boundary of a square 
cavity after 10 extrapolations. It is seen that a satisfactory solution for l / d  = 10, 
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20, 40, 80 is obtained after 1 , 3 , 5 ,  7 extrapolations since for these the error in the 
solutions is less than the absolute error. The corresponding time of calculation 
on the CDC 3600 including output of the solution is about 1.2 x 10-2/d2sec. 
This figure proves to be a good estimate of the computation time for all the solu- 
tions reported here. 

Extrapolations 

Mesh 1 2 3 4 5 6 7 error 

- 0.84 11 x 11 0.16 0.32 0.00 - - - 
21 x 21 1.36 1.88 0.04 0.00 0.00 0.00 - 0.20 
41 x 41 4.28 4.68 0.88 0.16 0.04 0.00 - 0.04 
81 x 81 8.76 9.12 4.24 1.56 0.24 0.04 0.00 0.01 

TABLE 1. Departure from numerical solution (i.e. after 10 extrapolations) of maximum 
value of solution of Poisson's equation in percentages. The absolute error is for the 
maximum value. 

f 
A > Absolute 

3.2. T h e  boundary conditions 

The treatment of the boundaries is simplest for (3e) .  On the vertical walls the 
temperature is given so that only interior points are considered. On the ends, 
we will choose T, = 0 so that we require at  the boundary points a molecule in 
which the value at  the image point is equal to that at  the interior point (central 
difference of T = 0). The end wall points are swept only in the direction of the 
flow. I have not found any difficulty due to this simplification. 

In  (3c)  y9 = 0 on the walls, so that the simplest procedure is to regard all 
points as simple interior points except for those immediately adjacent to the 
wall. For these points we assume, as in the boundary-layer approximation, that 
diffusion near the wall is predominantly normal to the wall and evaluate 

+' = (9) 

where 11.' and w' are the values at  points adjacent to the boundary. This relation 
ensures that the normal derivate of 4 is zero to order d2. 

Equation ( 3 b )  has not been quite so straightforward. There has been no 
difficulty on the vertical walls where a similar device to (9) is used. We evaluate 

w = d2U+2w'-wWN, (10) 

where w' ,  w" are evaluated at x ,  Z = d, 2d. This expression is also accurate to 
order d2. Application of this relation on the ends, however, leads to pronounced 
numerical instability. I have tried numerous devices including linear, quadratic 
and cubic extrapolation and various relaxation molecules without much success. 
The most stable was found to be w, = 0. This is rather an artificial condition. 
Fortunately, the error introduced is small and for the problems discussed here 
the ends are not the region of principal interest. In the computation we simply 
place w = w' after each interior scan. 

Notice in the above scheme that boundary conditions are applied directly and 
not by relaxation except that relaxation is used in ( 3 e )  on the ends. 
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It is also apparent that the solution o of ( 3 b )  contains an arbitrary harmonic 
function #. With the alternating row, column, direction scheme we find experi- 
mentally that r$ is nearly uniform over the mesh and increases with the number 
of iterations. This artifact of the double Poisson method can be suppressed, 
therefore, noting from Stokes's theorem, since the velocity is zero on the walls, 
that the mean vorticity over the mesh must be zero, by subtracting the mean 
vorticity from each mesh value a t  the end of each 4-scan. This adds a negligible 
amount to the time of computation. 

3.3. Verijication of the double Poisson method by solution of the 
biharmonic equation 

An interesting test case for the double Poisson scheme is the problem 

V"+/A) = 1 (11) 

in a rectangle of unit width and height h with V$ = 0 on the walls (see e.g. 
Batchelor 1954; Love 1927, chapter 22). This is the solution of (3) ,  for finite g, 
as A -+ 0. Table 2 gives values of $,,, and wmax for various h and compares them 
with values estimated by Love (1927). The rather artificial boundary condition 
applied to w on the ends strongly constrains w to take (here) its value for h --f co. 
This leads to a significant but acceptable error in + and is a reasonable price to 
pay for rapid convergence and stability. 

Present work After Grashoff Error 
-7 7-7 r----A-, 

h @ma= ",ax @ma, %I, @ma* Wma, Mesh 

11 x 41 4 3.13 X 8.00 x lov2 2.59 x 8.30 x 10-2 + 21 yo - 3.6 yo 
11 X 21 2 2.92 X 7.93 x 10V 2.45 x 7.84 x 10-2 + 19 % + 1.1 % 
11 X 11 1 1.75 X loT3 7.83 X 1.30 X lop3 4.17 x 10-2 + 35 % + 88 % 

TABLE 2. Numerical solution of the biharmonic equation with w, = 0 on z = 0, h 
compared with the heuristic formula of Grashoff (Love 1927). 

3.4. The ' outer ' iteration 

The organization of the steps (a ,  b, c ,  d ,  e, a,  ...) has been called the 'outer' 
iteration. This part of the problem is much less well understood than the 'inner' 
iterations. I have found it particularly helpful to consider the problem analogous 
to that of the design of servo-mechanisms. The criteria for stability and rate 
of convergence are very similar. The method used here has however been deter- 
mined by experiment. It is not necessarily the best. 

The calculation proceeds thus (in an obvious notation): given U,, 0, etc. find: 

w l ( u O ) ,  @l(wl), 'l('0, $19 wl), @2('1), + Z ( 0 2 ) ;  

w k z ,  4(v,), G(ll.2, a Wi); 
UZ(4, $2, wz), * * * 

and so on. Note that each solution of Poisson's equation involves one 4-scan 
(i.e. 4 iterations), so that a scan of ( 3 )  involves 8 iterations of each of the 
Poisson equations. 
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Two modifications of this scheme have been used. First, if one is interested in 
only a single value of the parameters, one may use the extrapolation scheme, 
described above. I found this useful only once, at  the beginning of the calculation. 
Repeated extrapolations easily lead to instability. (A critically damped non- 
linear servo-mechanism will often become unstable if the damping is reduced.) 
Secondly, a very helpful device is to change the parameters after each scan. For 
example one may take A,  = Ao+sAA, where s = 1,  2, 3, ..., n is the number of 
scans and AA/A < 1. With the present scheme, values of AA/A as large as 0.05 
are convenient. It is interesting to note that numerical instability occurs at  
rather higher values of A with this scheme (the improvement is generally about a 
factor of 2). The results given below, unless otherwise stated, use this scheme, the 
form of the ramp being indicated in the usual way as Ao(AA) A,. 

3.5. Stability of the ‘outer’ iteration 

In all the experiments performed here tests were first performed to determine 
the range of the parameters for which a stable, reasonably precise solution was 
possible. All of these showed the behaviour illustrated in figure 2, which shows a 
suitable parameter, here the Nusselt number 

for CT = 1 and a 11 x 11 mesh at  various A ,  as a function of the number of &scans. 
For A 5 4200 the solution is stable. The initial transient behaviour is typical of 
an under-damped servo-mechanism. It is seen that the damping decreases as A 
increases. However, for somewhat larger values of A the solution is no longer 
stable. As shown, at A = 4250 the solution begins to diverge at  scan number 30. 
Beyond this point the solution amplitude grows super-exponentially so that 
after a few more scans overflow occurs on the computer. The critical condition 
is surprisingly sharply defined. 

For solutions using a ramp it was found that the critical condition occurred at  
a somewhat higher A ,  but never higher by more than a factor of 2. This suggests 
that the outer iteration could be further improved. 

3.6. Precision 

The data from a typical test of the precision obtainable are shown in table 3 for 
a 40-step calculation for flow in a square cavity with A = lo3, CT = 1. It is seen 
that the values for N are more precise than those of U and V .  For example, 
with a 41 x 41 mesh the precision of $max and N is of order 0.1 % whereas for U 
and V it is 1 and 4 yo. The values even for the 11 x 11 mesh are quite acceptable, 
but there is a marked improvement in the 21 x 21 mesh. Except for calculations 
at the highest Rayleigh numbers, there is little to be gained from larger meshes. 

4. Results of the numerical experiments 
The numerical experiments have partially explored the region: 

r =  10-2-104, A = 0-5 x 104, h = 0.5-8, d = 2--L 
10 80‘ 
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A selection from stable solutions is presented below. The results cover a somewhat 
different region from those of the author's experiments (Elder 1965), where 
most of the mea.surements were for A > lo4 and h s 10. They do, however, 

N 

1 

05. ' I I I 

0 10 20 30 40 

S 

FIGURE 2. Stability of the outer iteration at various Rayleigh numbers A with CT = 1. 
Nusselt number N at scan s on a 11 x 11 mesh. Curves displaced vertically 0.5. 

Mesh @rPax N %lax u m a x  vln, 
11 x 11 2.412 1.378 132 6180 11.1 
21 x 21 2.562 1.472 128 7250 13.3 
41 x 41 2.558 1.475 137 7570 14.4 
d = O  2.560 1.475 137 7660 15.0 

TABLE 3. Precision test, A = 1000, CT = 1, 40 scans. 
The d = 0 values are estimates. 

cover a similar range to the excellent measurements of Eckert & Carlson (1961). 
The reader is recommended to inspect their paper while studying the present 
solutions. 

It has been found that h does not greatly affect theform of the solution. There- 
fore, except for the data of figure 5 ,  the discussion will be restricted to flow in a 
square. Should the reader desire to obtain an approximation to  the Aows in a 
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rectangle with h =+ 1 he should simply apply the transformation x' = hx, A' = A/h 
(Elder 1965) to the various distributions given for a square. 

Unfortunately the solutions are very unstable for small values of the Prandtl 
number. Below CT M 0.1 the solutions are stable only in the linear region so that 
no new information is available; above c E 1, the Prandtl number has only 
a minor effect. A direct investigation of the role of u is given in $4.6. Otherwise, 
the solutions are for IT = 1. 

A few remarks on the presentation of the results is necessary. Several of the 
figures show the variation of a quantity within the cavity. The name of the 
quantity and its maximum absolute value are written on the figures. The lines 

1.000 
temperature 

: .7 x I 
-1 3.675 x 

vorticity stream function 

FIGURE 3. Weak convection in a square cavity. Temperature, vorticity and stream function 
for A = 2 ,  CT = 1, h = 1 and mesh 21 x 21. (Note: in these figures the vertical scale is 
Q of the horizontal scale.) 

are drawn at  intervals - 1 (0.2) 1 of the maximum absolute value. However, 
where the quantity varies rapidly all the lines may not be shown. For example, 
in figure 7 (f) only the contours - 0-4 (0-2) 0.4 are shown. Occasionally other 
labelled contours will be shown. It is important to note in all such figures that 
the vertical scale is 3 of the horizontal scale-this was dictated by the system 
used to output the distributions directly onto the line printer. Finally, note that 
in all these figures the left-hand wall is the hot one. 

4.1. TheJEow as A + 0 

For A sufficiently small, the flow approaches the solution of the linear problem 
8 = 1-5, V4$- = A (Batchelor 1954). Figure 3 shows 8, w,  9 for A = 2 ,  u = 1 
for a square cavity. We notice that the temperature is indistinguishable from 
0 = 1 - x. The vorticity is independent of x because of the artificial bound- 
ary condition ma = 0 on the ends (see $3.2). The distribution and amplitude 
of w and $- are indistinguishable from those calculated in $3.3 directly from 
(11). 

Figure 4 shows the terms neglected in the linearization, viz. the advection and 
the inertia. Notice that the form of the advection is similar to sin nz sin 277.2, 
while the form of the inertia is similar to sin 27rx sin 2772. This feature of T/' having 

53 Fluid Mech. 24 
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two regions of opposite sign, and U having four regions of alternating sign will 
be found to persist to high Rayleigh numbers. 

The non-linear terms arise in the end regions. This is clearly shown in figure 5 
which gives V for h = 1, 2 , 4  at  A = 2, u = 1. It is apparent that the end regions 

1.721 x 
heat advection 

4.535 x 
inertia 

FIGURE 4. Advection and inertia for A = 2, u = 1, h = 1 and mesh 
21 x 21 (as in figure 3). 

52 x 10 -2 3.689 xYO-~ 
FIGURE 5. The end regions. Advection for A = 2, u = 1, d = & 

and h = 1, 2, 4. 
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a t  low Rayleigh numbers extend a distance of order L into the cavity (cf. Eckert 
& Carbon 1961, figure 2 ( b ) ) .  

4.2. Development of the boundary layers 

For small values of A the non-linear terms play a negligible role in the motion. 
The flow is maintained solely by a balance between viscous forces and buoyancy 
forces. We notice that the vorticity source strength U + A has the same value 
everywhere. However, as A is increased the motion becomes increasingly 
dominated by the non-linear terms. This is most strikingly illustrated by the 

08 

0 0 4  

2626 x lo2 7294 x lo2 2.316 x lo3 7021 x 103 2506 x 104 

FIGURE 6. Development of the boundary layers. The vorticity source term U at 
A :  (a)  200, ( b )  500, ( c )  1000, (d) 2000, ( e )  5000; for cr = 1 and a 21 x 21 mesh. 

growth of U.  Figure 6 shows U for a sequence of Rayleigh numbers. The first 
departure from uniformity of U is the more rapid growth of U in the lower left- 
hand and the upper right-hand corner, producing a saddle in the middle of the 
cavity (see A = 200,500 in figure 6). At A M 1000 the lower left and upper right 
regions have become more pronounced and negative values of U are about to 
appear (values of U < 0 are present at  A = 1050). The distribution of U now 
becomes increasingly localized near the vertical walls with an increasingly 
gentle depression between them (see A = 2000, 5000 in figure 6). As we shall see 
more clearly below, the solutions of figure 6 span the region from that of a 
linear system to that of boundary-layer flows. 

The solution for a fully-developed boundary-layer flow is shown in figure 7. 
The localization of the non-linear terms, the inertia and the advection, to the 
vicinity of the vertical walls is pronounced and both the vorticity and the 
temperature show strong horizontal gradients in the boundary-layer regions 
near the vertical walls. The uniformity of the distributions in the interior is 
striking. In  particular the negligible vorticity and the nearly uniform vertical 
temperature gradient in the interior confirms the prediction of Elder (1965). 
Another striking feature is the marked collapse of each boundary layer beyond 
its point of maximum growth at  x = ih, indicating that the fluid is no longer being 
accelerated by the dominance of buoyancy forces over viscous forces. This is seen 
in the localization of the inertia and the advection to the growing part of the layer 
(lower left-hand and upper right-hand walls) and the more rapid growth of the 
thermal and vorticity layers beyond x = +h (upper left-hand and lower right-hand 

53-2 



836 J .  W .  Elder 

walls). In  Elder (1965) it was suggested that this process could be interpreted as a 
competition between the two layers to entrain interior fluid. 

1.000 8.298 

1.694.X 10' 

1.504 x 10: 

10 I;" ___. 1560X 10' 

a 
- 

70.9 

FIGURE 7. Boundary-layer flow at A = 2 x lo4, CT = 1 for a 41 x 41 mesh: (a)  T, 
( b )  P, (c) w9 (4 v, te) u, (f) w ) .  

4.3. The maximum value of the stream function 

Figure 8 shows values of $,,, as a function of A .  Two distinct regions are 
observed: 

= 1.70 x 1 0 - 3 ~  ( A  < 200)~  (12a) 

$,,, = 5.87 x l0p2A$ ( A  > lo3). ( 1 2 b )  
These forms are to be expected. The linear region, in which $K A has been pre- 
dicted by Batchelor (1954) by considering the flow as A --f 0. The values are some- 
what higher than predicted. This is undoubtedly due to the boundary condition 
applied here on the ends (see $3.2). The non-linear region in which $K A* 
indicates the presence of thermal boundary layers, as obtained for example in 
Squire's calculation (Goldstein 1938). It was somewhat surprising that the non- 
linear region could be demonstrated in very small meshes (viz. d = &). 

The approach of the solution to the steady-state solutions is indicated on the 
figure for various ramps. Note that if AA is sufficiently large, there is a small 
overshoot. 

4.4. The heatJlux 
Figure 9 shows the Nusselt number N as a function of A .  Again there are two 

distinct regions, corresponding to those of figure 8 

N + 1 ,  ( 1 3 4  
N/A* = 0*25+0.01, A > 4000, h = 1 .  ( 1 3 b )  
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4.5. The verticul temperature gradient 

One of the intriguing features of free convection in a vertical slot is the growth 
of a uniform non-zero vertical temperature gradient /3 = O,(&, &h) (Elder 1965). 
Figure 7 (u) shows the temperature distribution for A = 2 x lo4. I n  the central 
region of the cavity the uniform 19, is readily apparent. 

The growth of @ is further demonstrated in figure 10, which shows values of 

10 

1 

s 

0.1 

.- 

.Lo 

0.01 
20 102 

A 

0 

A? 

FIGURE 8. Maximum value of the stream function, $max as a function of the Ray- 
leigh number, A .  Also shown, the solution for ramps 0 (AA) A of various AA. 

5 

N 

1 -  

lo3- 
A 

lo4 

FIGURE 9. Nusselt number N as a function of the Rayleigh number A .  
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Ph as a function of A for slots of various h. We notice for the lower values of A 
that Pcc A2, the data of figure 10 giving crudely 

/?h3/A2 = 8 x lo-'. (144 

There is a pronounced overshoot of about 50 % before the asymptotic value 

is approached. 

This restriction is seen to be unnecessary. 

Ph N 0.50 +_ 0.01 (14b) 

The discussion of the origin of /3 in Elder (1965) was largely for the case h B 1. 

A 

FIGURE 10. Vertical temperature gradient ; PF, as a function of the 
Rayleigh number A. Broken lines are for marked values of h. 

4.6. Role of the Prandtl number 

The data showing the direct role of the Prandtl number are summarized in 
figures 11, 12. 

= 1, lo3. As is to be expected 
we see that for small values of A ( 5  200) the solution is in the linear region 
and is independent of u. There is, however, a small effect in the boundary-layer 
region. Figure 12 is an attempt to  show directly the role of u on $ and N in the 
boundary-layer region. The data for u 2 1 is reliable to about & 0.1 yo, but below 
g = 0.1 the uncertainty increases rapidly to about & 1 yo. This is due to the 
increasing numerical instability and the consequent necessity to experiment at  
lower Rayleigh numbers. For example, at CT = stable solutions are possible 

Figure 11 shows +max(A) for two values of 
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only for A < 60. It therefore seems likely that a study of flows a t  small Prandtl 
number would require a separate investigation with a different numerical scheme. 

The most important result of the studies relating to figure 12 is that for free 
convective flows with 2 1 the role of the inertia terms is a minor one. Hence 

0 

10% 

102 10' lo4 

FIGURE 11. Role of the Prandtl number, ( A )  for u = 1, lo3 for 
a ramp A = 0 (100) 8000 in a 11 x 11 mesh. 

I 
1 10' 102 103 

u 

14 

FIGURE 12. Role of the Prandtl number on and N at fixed A ;  departure in yo from 
maximum value. Value at  D = 1, 10, lo2, lo3 lo4 for a ramp A = 0 (200) lo4. Other 
values for a logarithmic ramp - 102.4 (0.7071) 0.1 at A = 2 x lo3. The diagram should be 
regarded as schematic rather than quantitative (see text). 
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in theoretical studies to let CT -+ 00 is probably an excellent approximation for 
most common fluids, including gases. The flows with d +- GO are non-linear solely 
through advection as is the case in a porous medium. In non-steady problems 
the present study suggests that CT -+ GO is probably also an excellent approxima- 
tion. In this case changes occur solely through the term Whether or not 
this approximation would be a useful one for studies of thermal turbulence is, 
however, not clear. 

The most interesting features of figure 12 are the rapid variation for r < 1 
and that the weak maxima for N and @ occur a t  quite different A (of order 
A = 1 and 10, respectively). 

- 

4 
-002 

0 1 2 3 

z 
0 1 2 3 ‘4 

z 

FIGURE 13. Solution in the unstable region k = 4, A = 1500, d = &j: (a )  Temperature 
on the centre line x = +, T = O(4, z )  - 4. ( b )  Entrainment velocity, U(&, z) .  

4.7. A speculation on some curious results in the region of 
numerical instability 

In  the region of numerical instability some intriguing solutions have been 
obtained for flows in cavities with h 2 4 prior to the solution diverging. The 
motions are very similar to those of the secondary flows found by Elder (1 965). 
If I had not done those experiments, the results of this section would have been 
discounted. Even so, one hesitates a t  placing great significance on the solutions. 
Nevertheless, the results show certain reproducible features and are of sufficient 
interest to be set down. 
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The principal features are shown in figures 13 and 14 for solutions in a 11 x 41 
mesh at A = 1500, (r = 1. The features of interest appear after about 10 scans 
and persist till the solution diverges after 55 scans. Figure 13 shows the tem- 
perature on the centre line together with the entrainment velocity U ( i , z ) .  
Figure 14 shows the corresponding vorticity. The solutions suggest the presence 
of a secondary flow of vertical wavelength z 1.2. 

2685 x lo2 
vorticity 

FIGURE 14. Solution in the unstable region: the vorticity (as in figure 13). 

An immediate explanation of this phenomenon comes to mind when it is 
recalled that the outer iteration used here behaves like the time-dependent 
problem at large times (Garabedian 1956). In  the laboratory experiments 
secondary flows were not observed till the Rayleigh number was somewhat 
above 104. Yet here we have flows of a similar appearance at 1-5 x lo3. The situa- 
tions are, however, quite different in that here in scanning the system of equations 
in the region of numerical instability the system is a t  each step subjected 
to finite-amplitude disturbances (cf, figure 2). It would appear that these 
disturbances are capable of exciting other modes of the system, which would 
otherwise be strongly damped. 
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5. Discussion of the numerical solutions 
Throughout this investigation the outstanding feature has been the ease with 

which the numerical programme has been able to reproduce the flows found in 
the laboratory. However, it  is necessary to remark that this was not due to the 
existence of readily adaptable numerical procedures, but to the existence of a 
well-formulated, moderately well-understood problem. 

The gross features of the flow indicated in figures 8,9 ,10 ,12 ,  are those expected. 
Batchelor (1954) has discussed the linear region; the boundary-layer region and 
in particular the vertical temperature gradient has been measured and discussed 
by Elder (1965). 

The most interesting solutions given here are those of figures 6, 7 which show 
the development of the boundary layers and the fully-developed boundary-layer 
flow. The initial departure from the symmetry of the flow a t  small Rayleigh 
numbers occurs in the lower left- and upper right-hand corners. As the non- 
linear terms increase they gradually dominate over diffusion. For example, in 
figure 7 the contribution to the vorticity source term U which comes from advec- 
tion of vorticity reaches locally 92 yo. The non-linear terms become strongly 
localized sources. This is especially so for the inertia. Terms further down the 
sequence (3a-e) are smoother, due to the predominant role of diffusion. 

It is of interest to compare some of the predictions of the simple theory of 
Elder (1965) with those of the numerical solutions. Consider for example result 
(13b). From equation ( l l b )  of Elder (1965) we find that the Nusselt number 
N' evaluated at z = ih ,  x = 0 or 1 is 

N' = 0.30 (A/h)*, (15) 

(where throughout we take f = 0.5 and /3 = 0*5/h). The numerical results show 
that the mean Nusselt number N differs from N' at most by 5 yo so that (13b) 
and ( 1 5 4  are comparable. They differ by 20 yo and only a few percent of this 
could be due to numerical inaccuracy. Further, consider the predicted values of 
the vertical velocity. From equation (1 1 a)  of Elder (1965) we find that the maxi- 
mum value of the vertical velocity satisfies 

Wmax/(Ah)' = K ,  (16) 

where K = 0.23. From the data of figure 7 we find that with h = 1, A = 2 x 104, 
Wmax = 37.5 so that K = 0.27. Hence the simple theory is 16 % high. It can be 
concluded that the theory of Elder is at best accurate to 10 %. It is surprising 
that the theory works so well for it only purports to describe the interior region 
between the boundary layers and not the form of the boundary layers themselves. 
The inadequacies of the simple theory are largely removed in a recent investiga- 
tion by Gill (1965). 

The numerical scheme has proved very convenient and rapid and has produced 
results comparable in accuracy with the best laboratory measurements. It can be 
anticipated that other non-linear elliptic problems could be solved in a similar 
way. It should be remarked that the human effort involved in solving numerically 
a well-formulated problem is an order of magnitude less than a similar laboratory 
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investigation. Unfortunately, with present day computing machines the solutions 
are limited to only moderately non-linear problems. A solution, for example, 
of the time-dependent problem for turbulent motion is probably out of the 
question a t  the moment. 

In  most of the analytical work on this and similar problems, little has been 
done for flows intermediate in behaviour from that of the weak nearly linear 
flows and the fully-developed boundary-layer flows. Yet as seen here this is a 
region well suited to present-day computing machines. But we have not learned 
any strikingly new physics, although that is to be expected. The mechanisms 
which govern laminar free convection: the torque due to the horizontal gradient 
of buoyancy forces, diffusion and advection of vorticity and heat, are reasonably 
well understood. Nevertheless, our conceptual framework for treating essentially 
non-linear problems, clearly indicated when we attempt to predict the behaviour 
of a new system, is very poor and we have barely begun to realize the vision of 
such men as John von Neumann. 

I wish to acknowledge my debt to the members of the University of California, 
San Diego Computing Center and to their superb facility. Dr Clay Perry kindly 
read and commented on a draft of this paper. This work was supported by a 
National Science Foundation Grant GP-2414 and an Office of Naval Research 
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